ECE 513 HW2 Arpad Voros

X(2) = 345271 — 272 _ 323 +522 — 2
(1407271 (1 = 3271 +2.25272) (2 +0.7)(z — 1.5)2

Use partial fraction expansion to determine coefficient values.

X(z) A B C D
z _(z+0.7)+(z—1.5)+(z—1.5)2+?

D= X(2),_,=0

X —1.5)2 2
o X&)z -15° _ 265 s
< z=1.5 44
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A:M Zﬁz—0.626
z o or 484

Can solve for B by plugging in a value for z, or by taking d%%

_ d 2X(Z)
B= 5(2—1.5) —

z=1.5

_i3z2—|—5z—1
dz (2+0.7)

z=1.5

Use quotient rule to find derivative:

(62 +5)(2 +0.7) — (322 + 52 — 1)

(z+0.7)2 e
1755
B=— =362
181 3.626
All together:
z z z
X(z)=-0.626———+ + 3.626——— + 6.023——
(2) Gron P0G Tas) TV Ty
6.023

x(n) = |~0.626(~0.7)" + 3.626(1.5)" + = -=n(1.5)" | u(n)

2. (a) First we must determine the magnitude of the poles of H(z). This will let us know
which poles must decrease in magnitude to make the system stable

% coefficients of b and a
b = [0.8581 4.2134 9.5802 9.5802 4.2134 0.8581];
a = [1 3.0937 5.5700 5.2578 2.0294 0.1642];

% find magnitude of poles
mag-a = abs(roots(a));

L N R

Which tells us that the magnitudes of the first two poles p; and ps, where p} = po,
are greater than or equal to 1. In this case, p; = p5 = —0.6979 + j1.3800, |p1| =
|p2| = 1.5465. Since there are 2 unstable poles our order, N, equals 2.
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1

(z = p1)(z — p2)

22

(z7t =p)(z7" = p2)

H,.(2) =

Hyn(2) = 2 NHyn(z7h) =

With some rearranging, we get

1
H.n(2) =
PP — D)z — 1)
So that
e B)
H(z) = 1 1

(2= L)z = D) [Tios(z — i)

In MATLAB, finding the new zeros and poles goes as follows

1 % scale down the first two poles, convert to coefficients
2 roots.a = roots(a);

3 roots.a(l) =1 / roots.a(l);

4 roots_.a(2) =1 / roots.a(2);

5 a-new = poly(roots.a);
6
7
8

% scale down the entirety of the zero coefficients
b_.new = b ./ (abs(mag-a(l))~2);

The transfer function of the new stable system results in

Brew(z)

Apew(2)

Bhew(2) = 0.3588 + 1.761821 4 4.00582 2 + 4.00582 3 + 1.76182* 4 0.35882°
Apew(2) = 1.0000 + 2.28152 1 +2.21762 72 + 1.25052 3 + 0.37812~* 4 0.02872°

H(z) =

(b) Pole/Zero plots for the new, stable system, compared to the old, unstable system.
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Figure 1: Stable Pole/Zero plot Figure 2: Unstable Pole/Zero plot
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(c) Magnitude response for the new, stable system, compared to the old, unstable system
from 0 to . Response remains the same.

Stable Unstable
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Figure 3: Stable magnitude response Figure 4: Unstable magnitude response

3. (a) The transfer function of the second order system is given by H(z) = 28 with gain
G of 2.4883 where zeros and poles are given by the following vectors in MATLAB:

% zeros of equal magnitude

2 g = [-0.7086+0.70561, —0.7086—0.70561, —0.4377+0.89911,
—0.4377-0.8991i, —0.4485+0.89381i, —0.4485-0.89381,
—0.5009+0.86551, —0.5009-0.86551, —1.00007;

3 % poles with decreasing magnitude

4 p = [—-0.4305+0.9011i, —0.4305-0.9011i, —0.4183+0.89931,

—0.4183-0.89931, —0.3583+0.89041i, —0.3583-0.89041,

—0.0915+0.79721, —0.0915—-0.79721i, 0.3854];

Complex conjugate pairs can be represented in the second order form as follows
(z—c)(z —c*) = (22 = 2%Re(c)z + |¢|?)

So that

B(z) = (22 +1.41722 4+ 1) (2% +0.87542 + 1) (2> +0.8970z + 1) (2> + 1.00182 + 1) (2 + 1)

(22 4 0.86102 + 0.9973) (2% 4 0.83662 + 0.9837) (2% 4 0.71662 + 0.9212)
A(z) = (22 + 0.1830z + 0.6439)(z — 0.3854)

Assuming the gain of the system refers to a steady state input, w = 0. Since z(w)
just equals e/*, 2(0) = e/ = 1, so

B(1) 170.8931

G=H(1l) = ~ = 7.1576
(1) A1) 23.8756
Need to lower the gain from 7.1576 to 2.4883, so
B
H(z) = 0.3476ﬁ | G =2.4883
A(z)
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(b) The difference equation associated with the second order sections derived in part (a)
can be derived from

V(2)  Yigb(k)z

H(z) = X(2) 14+, alk)z*
so that . .
Y(z) |1+ Za(k)z_k] = X(z) lz b(k)z‘k]
k=1 k=0

Coefficients of the denominator and numerator of H(z) are found using the poly
function in MATLAB. Then using the inverse Z-transform, we get

0.3476 [z(n) + 5.1914z(n — 1) + 14.6838z(n — 2) + 27.4823x(n — 3) + 37.0894x(n — 4)+
37.0893z(n — 5) + 27.4821x(n — 6) + 14.6835z(n — 7) + 5.1913z(n — 8) + 2(n — 9)] =
y(n) +2.2118y(n — 1) + 4.9238y(n — 2) + 5.3376y(n — 3) + 5.8012y(n — 4)+

3.0755y(n — 5) + 1.8424y(n — 6) — 0.0518y(n — 7) — 0.0406y(n — 8) — 0.2243y(n — 9)

And to get the difference equation, move all the time-shifted y components to the
other side of the equality to solve for y(n).

4. (a) Since the spectrum of z,(t) is represented by a rectangle function, S,(f) is the
convolution of that rectangle with itself, so we know its a triangle function. We
know Fy = 50 Hz and

xq(t) = 2Fpsinc(2Fpt) <= X, (f) =1 <2£_‘0)

sa(t) = 22 (t) = 4F§ sinc?® (2Fpt) <= S, (f) = 2FA (ﬁi)
0

Which is given by the plot below.

s, (f)
2F, - 2

-2F 0 2F

0 0

Figure 5: Plot of S,(f)
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After the ideal A/D converter, s,(t) is multiplied with an impulse train with form
d(t — nTs) where n is the sample and T} is the sampling period. This represents
convolution in the frequency domain. We know the sampling frequency, Fs = 250
Hz, and
0(t —nTs) <= Fs0(f —nFy)

So -

S(f) = Salf)x Fs Y 8(f —nF,)
Which results in S, (f) scaled up by our sampling frequency, repeated at intervals of
our sampling frequency. A plot of S(f) is found below.

S(f)
2FF

-2F -F -oF, F 2F,

Figure 6: Plot of S(f)

Magnitude is 2FpFs; = 25,000. Visually, we can see that the Nyquist sampling
rate, or the rate before aliasing occurs, is 2Fy Hz, or 100 Hz. After the signal s(n) is
reconstructed through the ideal D/A converter with the same rate Fy, the magnitude
goes back to 2F, and the repetitions stop for |f| > % That cutoff frequency F, is
125 Hz. Meaning only the range between —F, : F,. of S(f) remains in Y(f):

Y(f)

2F,

Figure 7: Plot of Y (f)
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(b) Repeating part (a) but with Fy = 150 Hz. The plot of S,(f) remains the same. The
plot of S(f), however, looks like the following (still to scale from part (a)):

S(f)

BF,  2F,  Fg2F, 0 2FF oF 3F,

Figure 8: Plot of S(f)

Magnitude is 2FyFs = 15,000. Visually, we can see that the Nyquist sampling rate,
or the rate before aliasing occurs, is 2Fy Hz, or 100 Hz. In this case, aliasing occurs.

F.= % = 75 Hz. The range from —F, : F,. of S(f) remains in Y (f):

2F

Figure 9: Plot of Y (f)
NOTE: Assume that the overlapping portions in Figures 8 and 9 are added together;
I can’t seem to figure out how to do that in MATLAB.

5. (a) Xa(f) ranges from -5 kHz to 5 kHz, and sampled (F, 4,p) at 10 kHz. Meaning, the
spectrum of the sampled signal X (f) is the following:
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X(f)

10,000 |
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Figure 10: Plot of X (f)

No aliasing occurs. In this case, the sampling rate is exactly double the Nyquist
frequency. An ideal discrete-time system low-pass filter with unity gain and F, of
w = 2m/3 is applied to z(n) to produce y(n). This is essentially two thirds of Fx (5
kHz), since our Fiy determines the period before aliasing starts, shown by

(=Fn,Fy) <= (-7, 7)
Therefore, going from x(n) — y(n) only the frequencies in range —% kHz : %
kHz remain, which is where the vertical lines occur in Figure 11. With unity gain,
the magnitude remains the same.

10,000

20 -15 -10 -3.33 0 3.33 10 15 20
Frequency (kHz)

Figure 11: Plot of Y (f)

This gets passed through an ideal D/A filter to produce y,(t). The cutoff frequency

Fspya
2

occurs at F, = = 5 kHz. Therefore, the reconstructed signal looks like this
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0.667 -

20 -5 -10  -F, 0 Fe 10 15 20

Frequency (kHz)

Figure 12: Plot of Y, (f)
(b) Repeat but with Fy 4,p = 15 kHz and F; p/4 = 10 kHz.

X(f)

15000 -

20 15 -10 -5 0 5 10 15 20
Frequency (kHz)

Figure 13: Plot of X (f)

No aliasing occurs. Nyquist frequency is 7.5 kHz. Going from x(n) — y(n) only the
frequencies in range f% kHz : % kHz remain, which is where the vertical lines
occur in Figure 14. With unity gain, the magnitude remains the same.
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15000

Frequency (kHz)

Figure 14: Plot of Y (f)

This gets passed through an ideal D/A filter to produce y,(t). The cutoff frequency
F

occurs at I, = =22/ = 5 kHz. Therefore, the reconstructed signal looks like this

Frequency (kHz)

Figure 15: Plot of Y, (f)

(c) Repeat but with F 4,p = 8 kHz and F p/4 = 16 kHz.



ECE 513 HW2 Arpad Voros

X(f) X(f)

12800
8000 ?

8000
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Figure 16: Plot of X (f) with overlap Figure 17: Plot of X(f)

Aliasing occurs; Nyquist frequency is 4 kHz. Going from z(n) — y(n) only the
frequencies in range —% kHz : % kHz remain, which is where the vertical lines

occur in Figure 18. With unity gain, the magnitude remains the same.

8000

20 -15 -10 -2.67 2.67 10 15 20
Frequency (kHz)

Figure 18: Plot of Y(f)

This gets passed through an ideal D/A filter to produce y,(t). The cutoff frequency

Fs p/a
2

occurs at F, = = 8 kHz. Therefore, the reconstructed signal looks like this

10
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0.2667
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Figure 19: Plot of Y, (f)
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