
ECE 513 HW2 Arpad Voros

1.

X(z) =
3 + 5z−1 − z−2

(1 + 0.7z−1)(1− 3z−1 + 2.25z−2)
=

3z3 + 5z2 − z
(z + 0.7)(z − 1.5)2

Use partial fraction expansion to determine coefficient values.

X(z)

z
=

A

(z + 0.7)
+

B

(z − 1.5)
+

C

(z − 1.5)2
+
D

z

D = X(z)|z=0 = 0

C =
X(z)(z − 1.5)2

z

∣∣∣∣
z=1.5

=
265

44
≈ 6.023

A =
X(z)(z + 0.7)

z

∣∣∣∣
z=−0.7

=
−303

484
≈ −0.626

Can solve for B by plugging in a value for z, or by taking d
dz

(z−1.5)2X(z)
z

B =
d

dz
(z − 1.5)2

X(z)

z

∣∣∣∣
z=1.5

=
d

dz

3z2 + 5z − 1

(z + 0.7)

∣∣∣∣
z=1.5

Use quotient rule to find derivative:

=
(6z + 5)(z + 0.7)− (3z2 + 5z − 1)

(z + 0.7)2

∣∣∣∣
z=1.5

B =
1755

484
≈ 3.626

All together:

X(z) = −0.626
z

(z + 0.7)
+ 3.626

z

(z − 1.5)
+ 6.023

z

(z − 1.5)2

x(n) =

[
−0.626(−0.7)n + 3.626(1.5)n +

6.023

1.5
n(1.5)n

]
u(n)

2. (a) First we must determine the magnitude of the poles of H(z). This will let us know
which poles must decrease in magnitude to make the system stable

1 % coefficients of b and a
2 b = [0.8581 4.2134 9.5802 9.5802 4.2134 0.8581];
3 a = [1 3.0937 5.5700 5.2578 2.0294 0.1642];
4

5 % find magnitude of poles
6 mag a = abs(roots(a));

Which tells us that the magnitudes of the first two poles p1 and p2, where p∗1 = p2,
are greater than or equal to 1. In this case, p1 = p∗2 = −0.6979 + j1.3800, |p1| =
|p2| = 1.5465. Since there are 2 unstable poles our order, N , equals 2.
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Hun(z) =
1

(z − p1)(z − p2)

Hun(z) = z−NHun(z−1) =
z−2

(z−1 − p1)(z−1 − p2)

With some rearranging, we get

Hun(z) =
1

|p1|2(z − 1
p1

)(z − 1
p2

)

So that

H(z) =

1
|p1|2B(z)

(z − 1
p1

)(z − 1
p2

)
∏5

i=3(z − pi)

In MATLAB, finding the new zeros and poles goes as follows

1 % scale down the first two poles, convert to coefficients
2 roots a = roots(a);
3 roots a(1) = 1 / roots a(1);
4 roots a(2) = 1 / roots a(2);
5 a new = poly(roots a);
6

7 % scale down the entirety of the zero coefficients
8 b new = b ./ (abs(mag a(1))ˆ2);

The transfer function of the new stable system results in

H(z) =
Bnew(z)

Anew(z)

Bnew(z) = 0.3588 + 1.7618z−1 + 4.0058z−2 + 4.0058z−3 + 1.7618z−4 + 0.3588z−5

Anew(z) = 1.0000 + 2.2815z−1 + 2.2176z−2 + 1.2505z−3 + 0.3781z−4 + 0.0287z−5

(b) Pole/Zero plots for the new, stable system, compared to the old, unstable system.
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Figure 1: Stable Pole/Zero plot
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Figure 2: Unstable Pole/Zero plot
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(c) Magnitude response for the new, stable system, compared to the old, unstable system
from 0 to π. Response remains the same.
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Figure 3: Stable magnitude response
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Figure 4: Unstable magnitude response

3. (a) The transfer function of the second order system is given by H(z) = B(z)
A(z) with gain

G of 2.4883 where zeros and poles are given by the following vectors in MATLAB:

1 % zeros of equal magnitude
2 q = [−0.7086+0.7056i, −0.7086−0.7056i, −0.4377+0.8991i, ...

−0.4377−0.8991i, −0.4485+0.8938i, −0.4485−0.8938i, ...
−0.5009+0.8655i, −0.5009−0.8655i, −1.0000];

3 % poles with decreasing magnitude
4 p = [−0.4305+0.9011i, −0.4305−0.9011i, −0.4183+0.8993i, ...

−0.4183−0.8993i, −0.3583+0.8904i, −0.3583−0.8904i, ...
−0.0915+0.7972i, −0.0915−0.7972i, 0.3854];

Complex conjugate pairs can be represented in the second order form as follows

(z − c)(z − c∗) = (z2 − 2Re(c)z + |c|2)

So that

B(z) = (z2 +1.4172z+1)(z2 +0.8754z+1)(z2 +0.8970z+1)(z2 +1.0018z+1)(z+1)

A(z) =

(z2 + 0.8610z + 0.9973)(z2 + 0.8366z + 0.9837)(z2 + 0.7166z + 0.9212)

(z2 + 0.1830z + 0.6439)(z − 0.3854)

Assuming the gain of the system refers to a steady state input, ω = 0. Since z(ω)
just equals ejω, z(0) = ej0 = 1, so

G = H(1) =
B(1)

A(1)
≈ 170.8931

23.8756
= 7.1576

Need to lower the gain from 7.1576 to 2.4883, so

H(z) = 0.3476
B(z)

A(z)
| G = 2.4883
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(b) The difference equation associated with the second order sections derived in part (a)
can be derived from

H(z) =
Y (z)

X(z)
=

∑L
k=0 b(k)z−k

1 +
∑L

k=1 a(k)z−k

so that

Y (z)

[
1 +

L∑
k=1

a(k)z−k

]
= X(z)

[
L∑

k=0

b(k)z−k

]
Coefficients of the denominator and numerator of H(z) are found using the poly
function in MATLAB. Then using the inverse Z-transform, we get

0.3476 [x(n) + 5.1914x(n− 1) + 14.6838x(n− 2) + 27.4823x(n− 3) + 37.0894x(n− 4)+

37.0893x(n− 5) + 27.4821x(n− 6) + 14.6835x(n− 7) + 5.1913x(n− 8) + x(n− 9)] =

y(n) + 2.2118y(n− 1) + 4.9238y(n− 2) + 5.3376y(n− 3) + 5.8012y(n− 4)+

3.0755y(n− 5) + 1.8424y(n− 6)− 0.0518y(n− 7)− 0.0406y(n− 8)− 0.2243y(n− 9)

And to get the difference equation, move all the time-shifted y components to the
other side of the equality to solve for y(n).

4. (a) Since the spectrum of xa(t) is represented by a rectangle function, Sa(f) is the
convolution of that rectangle with itself, so we know its a triangle function. We
know F0 = 50 Hz and

xa(t) = 2F0 sinc(2F0t)⇐⇒ Xa(f) = Π

(
f

2F0

)

sa(t) = x2a(t) = 4F 2
0 sinc2(2F0t)⇐⇒ Sa(f) = 2F0Λ

(
f

2F0

)
Which is given by the plot below.

-2F
0

0 2F
0

2F
0

S
a
(f)

Figure 5: Plot of Sa(f)
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After the ideal A/D converter, sa(t) is multiplied with an impulse train with form
δ(t − nTs) where n is the sample and Ts is the sampling period. This represents
convolution in the frequency domain. We know the sampling frequency, Fs = 250
Hz, and

δ(t− nTs)⇐⇒ Fsδ(f − nFs)

So

S(f) = Sa(f) ? Fs

∞∑
n=−∞

δ(f − nFs)

Which results in Sa(f) scaled up by our sampling frequency, repeated at intervals of
our sampling frequency. A plot of S(f) is found below.
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Figure 6: Plot of S(f)

Magnitude is 2F0Fs = 25,000. Visually, we can see that the Nyquist sampling
rate, or the rate before aliasing occurs, is 2F0 Hz, or 100 Hz. After the signal s(n) is
reconstructed through the ideal D/A converter with the same rate Fs, the magnitude
goes back to 2F0 and the repetitions stop for |f | > Fs

2 . That cutoff frequency Fc is
125 Hz. Meaning only the range between −Fc : Fc of S(f) remains in Y (f):
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Figure 7: Plot of Y (f)
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(b) Repeating part (a) but with Fs = 150 Hz. The plot of Sa(f) remains the same. The
plot of S(f), however, looks like the following (still to scale from part (a)):
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Figure 8: Plot of S(f)

Magnitude is 2F0Fs = 15,000. Visually, we can see that the Nyquist sampling rate,
or the rate before aliasing occurs, is 2F0 Hz, or 100 Hz. In this case, aliasing occurs.
Fc = Fs

2 = 75 Hz. The range from −Fc : Fc of S(f) remains in Y (f):
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Figure 9: Plot of Y (f)

NOTE: Assume that the overlapping portions in Figures 8 and 9 are added together;
I can’t seem to figure out how to do that in MATLAB.

5. (a) Xa(f) ranges from -5 kHz to 5 kHz, and sampled (Fs,A/D) at 10 kHz. Meaning, the
spectrum of the sampled signal X(f) is the following:
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Figure 10: Plot of X(f)

No aliasing occurs. In this case, the sampling rate is exactly double the Nyquist
frequency. An ideal discrete-time system low-pass filter with unity gain and Fc of
ω = 2π/3 is applied to x(n) to produce y(n). This is essentially two thirds of FN (5
kHz), since our FN determines the period before aliasing starts, shown by

(−FN , FN )⇐⇒ (−π, π)

Therefore, going from x(n) → y(n) only the frequencies in range − 2FN

3 kHz : 2FN

3
kHz remain, which is where the vertical lines occur in Figure 11. With unity gain,
the magnitude remains the same.
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Frequency (kHz)
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Y(f)

magnitude = 6666.67

Figure 11: Plot of Y (f)

This gets passed through an ideal D/A filter to produce ya(t). The cutoff frequency

occurs at Fc =
Fs,D/A

2 = 5 kHz. Therefore, the reconstructed signal looks like this
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Figure 12: Plot of Ya(f)

(b) Repeat but with Fs,A/D = 15 kHz and Fs,D/A = 10 kHz.

Figure 13: Plot of X(f)

No aliasing occurs. Nyquist frequency is 7.5 kHz. Going from x(n)→ y(n) only the
frequencies in range − 2FN

3 kHz : 2FN

3 kHz remain, which is where the vertical lines
occur in Figure 14. With unity gain, the magnitude remains the same.
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Figure 14: Plot of Y (f)

This gets passed through an ideal D/A filter to produce ya(t). The cutoff frequency

occurs at Fc =
Fs,D/A

2 = 5 kHz. Therefore, the reconstructed signal looks like this
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Figure 15: Plot of Ya(f)

(c) Repeat but with Fs,A/D = 8 kHz and Fs,D/A = 16 kHz.
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Figure 16: Plot of X(f) with overlap
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Figure 17: Plot of X(f)

Aliasing occurs; Nyquist frequency is 4 kHz. Going from x(n) → y(n) only the
frequencies in range − 2FN

3 kHz : 2FN

3 kHz remain, which is where the vertical lines
occur in Figure 18. With unity gain, the magnitude remains the same.
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Figure 18: Plot of Y (f)

This gets passed through an ideal D/A filter to produce ya(t). The cutoff frequency

occurs at Fc =
Fs,D/A

2 = 8 kHz. Therefore, the reconstructed signal looks like this
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Figure 19: Plot of Ya(f)
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